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ABSTRACT

Collision dynamics of the spinning table tennis balls are systematically studied by
introducing a new parameter €;, the tangential coefficient of restitution, in addition to the
conventionally accepted parameter €,, the normal coefficient of restitution. The normal
coefficient of restitution describes the dissipative property of head-on collisions between
the ball and the racket, which would be significant even if the spin degrees of freedom were
completely ignored. The tangential coefficient of restitution is closely related to the surface
properties of the two colliding members, and controls the coupling between translational
and spin degrees of freedom. Among all the ball sports table tennis has the ball with the
most extreme mass distribution: its total mass is concentrated within the outermost 2%
region of the entire radius. Thus, the tangential coeflicient of restitution plays a crucial
role in the spin dynamics of table tennis.

In this paper we experimentally determine the dependence of the normal coefficient of
restitution on the normal component of incident relative velocity. The tangential coefficient
of restitution is also found to depend on the tangential component of incident relative
velocity as well as on the incident angle. Making use of the simplest configuration of ball-
racket collisions, we give the preliminary but first report of the dependence of the tangential
coefficient of restitution upon incident speeds and angles. Most researchers in table tennis
dynamics have treated the coefficients of restitution as constant parameters. Thus, the
present work should help us evaluate to what extent these treatments are justified.

Further, taking the average of these coeflicients over many collisions, we will be able
to locate a variety of rackets, with and without glue effects, on the (€t, €) diagram as a
step toward classifying the commercially available rackets quantitatively on a physically
sound basis. '

* Based in part on a keynote speech given at the Fourth ITTF Sports Science Congress
held in Beijing, the People’s Republic of China, April 26-30, 1995.
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- 1. INTRODUCTION

Collision dynamics of solid particles have been a sub ject of extensive studies in many
fields of science and engineering. In astronomy planetary rings such as Saturn’s classical
rings are considered large-scale grain flow phenomena in which shear flows of many chunks
of icy rock undergo inelastic collisions while orbiting a central planet. Similar granular
flows of a smaller scale are common in a geophysical context, including snow avalanches,
landslides, sand dunes, and voleanic ejecta flows. In engineering numerous applications
exist in materials transport and handling which involve rapid shear fows, from fine powder
to large grains. Understanding the behavior of these granular flows is also important in
the pharmaceutical and mineral industries in relation to their size sorting and transport
problems (e.g. Savage and Sayed 1984). _

In this paper we apply the mathematical machinery developed for theoretical studies
of dissipative collisions between icy particles in planetary rings [Araki and Tremaine (1986),
Araki (1988, 1991a, 1991b)] to the collisional interactions between table tennis balls and
rackets as an attempt to provide our sport with a physically rigorous basis.

We make a major assumption at the outset: We assume that the table tennis ball is
a “hard” sphere, that is, undeformable under the influence of collisional impulse. We also
assume that the racket has an undeformable flat surface. If both the ball and the racket
are assumed hard, then their collisional interaction can be well approximated as that of
two hard spheres with one member having much greater radius and mass than another.
Of course, any active player would certainly reject this assumption since deformations of
the ball and the racket surface are significant even in moderately high-speed collisions.
Moreover, we all know that understanding and enhancement of elastic deformation of
colliding members, especially that of the blade complex including the top rubber sheet,
the sponge, and the blade, is the latest issue in modern table tennis among players and
manufacturers alike. Therefore, we must keep a careful eye on when the assumption of
hard-sphere collisions breaks down. Due to its geometrical simplicity, however, even a
hard-sphere model can tell us much about the ball-racket interaction as we show in the
following sections.

Under the above assumption the details of complex ball-racket interactions during
a collision can be reduced to two simple parameters, €, and e, which in the present
work we call the normal and tangential coefficients of restitution. Each coeficient 1s
a factor by which a certain component of the incident relative velocity between points
of contact is altered due to a collision. Although it is customary to assume that to a
first approximation these coefficients are constant and independent of the magnitude and
direction of the incident relative velocity, it is known that in real collisions ¢, and e, may
depend substantially on the incident relative velocity. '

In the context of collision dynamics of planetary rings experimental studies on the
velocity dependence of the above coefficients have been actively pursued over the last
decade. Bridges et al. (1984) were the first to attempt to determine the velocity dependence
of the normal coefficient of restitution during head-on collisions of ice balls against a
stationary ice brick at low ambient temperatures at Saturn. They found a power-law
dependence ¢, = av? with & = 0.32 and 8 =023 at T = 158 to 173 K when the
incident normal speed v, was measured in cm/s. Later Hatzes et al. (1988) concluded that
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changing the surface property from smooth to frost-covered and rough significantly reduced
the elasticity of normal collisions. Hatzes et al. (1991) measured the sticking force in the
presence of a layer of water frost 10 to 100 um thick on the surfaces of colliding ice spheres,
and found a maximum for some intermediate impact velocity between 0.01 and 1 cm/s.
Supulver et al. (1995) were the first to experiment on glancing collisions of ice spheres with
unfrosted surfaces using a combination of a disk pendulum and a torsion pendulum. The
disk pendulum alone with fixed torsion pendulum simulates normal collisions while the
torsion pendulum provides colliding members with an additional degree of freedom within
" the plane tangent to the colliding surfaces. Restricting to the normal collisions, they first
reproduced the power-law dependence e, (vn) with & = 0.51 and 3 = 0.19 for fixed torsion
pendulum, while @ = 0.52 and § = 0.14 for free torsion pendulum (FIG. 3 in Supulver et
al. 1995). For glancing collisions of smooth ice particles, they found the following linear
least-square fits: €, = 0.59 — 0.11v, at v, > 0.1 cm/s, and €; = 0.88 —0.0038v; at v > 0.1
cm/s. At impact speeds lower than 0.1 cm/s the scatter of data was significant, probably
because the surface irregularities had the largest effect at those speeds (FIG. 5 m Supulver
et al. 1995). An additional experiment on glancing collisions of a rubber ball against a flat
sandpaper-covered aluminum plate (FIG. 10 in Supulver et al. 1995) showed that while
¢, was rather constant over a range of impact angles, €; clearly depended on the impact
angle.

In the context of ball-racket collisions in table tennis Tiefenbacher and Durey (1994a,
1994b) were the first to propose the usefulness of tangential coefficient of restitution, while
others including Kawazoe (1992) have focused on the conventional coefficient of restitution
in head-on collisions of spinless balls with rackets.

In this paper we attempt to examine the validity of hard-sphere collision models based
on ¢, and ¢ in table tennis dynamics. We also experimentally determine the dependence
of & on the incident relative speed, incident angle, and ¢,.

2. BASIC EQUATIONS OF COLLISION DYNAMICS

We consider a collision of two hard spheres in a three dimensional space and formulate
the laws of momentum conservation and of angular momentum conservation in the impulse
approximation. A hard sphere is characterized by its radius, mass, and moment of inertia.
For an ITTF-approved table tennis ball its radius is 7 = 1.9 c¢m, mass is m = 2.5 g; and

moment of inertia is
21—~ (1—t/r)®
=2
_ 51— (1—t/r)?
assuming that the ball is a spherical shell of thickness ¢ = 0.04 cm. Suppose Particle 1
with radius 71, mass m;, moment of inertia [y, incident velocity v1, and incident angular
velocity & collides with Particle 2 with radius 72, mass mgq, moment of inertia I, incident
velocity 72, and incident angular velocity @, (Figure 1). The corresponding postcollision
velocities and angular velocities are primed. If the position vectors of spherical centers of
the colliding members in contact are ¥ and 72, the collision site is given by Ty + 7 A where
B 1)

ri+r2

mr? = 0.653mr? = 5.89gcm?,
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1s a unit vector on a straight line connecting two centers which defines the “collision
normal.” The plane perpendicular to the collision normal and containing the collision site
1s the “collision tangent.” Then, the conservation of momentum requires

ma(3, — 1) = ~AP 2
ma(T — i) = AP 3)

where AP is the impulse exerted on Particle 2 by Particle 1. The conservation of angular

momentum leads to ~ .
Il((ﬂi —(..31)2?"1/\)( —AP) (4)

(
L&, — &3) = 12(=X) x AP (5)

3. NORMAL AND TANGENTIAL COEFFICIENTS OF RESTITUTION
In this section we give the mathematical definition of the normal and tangential co-
efficients of restitution which together describe the dissipative character of hard-sphere
collisions. We first define the precollision relative velocity of the center C; of Particle 1
with respect to the center Cy of Particle 2 and its posteollision counterpart

§="o ~ (6)
97':"7;“ 2- (7)

Then, we define the precollision relative velocity of the point of contact P, on the surface
of Particle 1 with respect to the point of contact P, on the surface of Particle 2 and its
postcollision counterpart

W=7+ (ri@ +r2d2) x A (8)
W' = +(rd) +ra@)) x X (9)
Decomposition of W into the normal and tangential directions yields
- Wo=(" W=7, (10)
WesW —Wo=(AxW)xX= gt (nd +rdr) x X (11)

With the above introduced velocities we define the normal coefficient of restitution as a
factor by which the normal component W, of the relative velocity of two surface points
coming into contact is altered due to a collision:

n

W! = oW (0<e, <1) (12)

Similarly, the tangential coefficient of restitution is defined as a factor by which the tan-
gential component W, is altered due to the collision:

I,ift’ = EgT/_'Vg (_1 .<_ € S 1) (13)
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The normal coefficient of restitution is identical with the conventional coefficient of resti-
tution and has nonnegative values. However, the tangential coefficient of restitution intro-
duced in Eq. (13) can range between —1 and +1 and positive values represent the surface
roughness while negative values correspond to the tangential elasticity, as described in
more detail at the end of Section 4.

Qur objective is to examine how the choice of characteristics of colliding memebers
affects the values of these coefficients, and also whether they remain constant over a variety
of incident relative velocities. If they do not remain constant, we study what they depend
upon, specifically the W, dependence of ¢,, the W, dependence of e;, and the possible
relation between ¢; and ¢,.

4. SOLUTION IN 3D i
With the above preparation we will find the solution of hard-sphere collisions in three
dimensions. Combining Eqs. (2), (3), (4), (5), (8), and (9), we can now express the
normal and tangential components of impulse on Particle 2 exerted by Particle 1 in terms
of precollision variables:

AP‘n = ‘)Hﬁnﬁ}n (14‘)
Aﬁt = 2#E3Wf, (15)

where 14+ -
Kn = 96" (16)
1 —e r? 7l - -
= 1 -4+ = 17
K1 5 { +#(Il + I, (17)

and i
b= ——— (18)

My + M2

is the reduced mass. Then, we can solve for the postcollision velocities and angular veloc-
ities:

2 N -
T = T — L(kaWa + 52), (19)
. ™
el — 2!‘5 - T D
Ty = U2 + —(KnWa + ke W) (20)
ma
oy — 2#1‘{"3?‘1 by Y 21
Wy =W — I A X W, (—‘ )
1
2 L.
Gy =@y - 2N W (22)

2

From Egs. (21) and {22) we find that when &, = 0 angular velocities are unaffected by
collisions. In other words spin and translational degrees of freedom are totally decoupled
when x, = 0. In this sense x; can be considered as the coupling constant between the
two degrees of freedom. The definition Eq. (17) shows that s, = 0 is equivalent to either
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e, =1orl; =0or Iy =0 First, as mentioned below, €; = 1 corresponds to the property
of perfectly slippery surfaces. Obviously, in this case spin on the ball would not affect the
fate of its translational motion. Second, if one of the colliding members has such a radial
mass distribution that all the mass is concentrated at its center, the decoupling is perfect.
This is a rather unphysical situation, but for the sport of table tennis it is especially
significant to consider the opposite extreme. That is, among all the ball sports the table
tennis ball has the most extreme mass distribution: its total mass is concentrated within
the outermost 2% region of the entire radius. Thus, the dimensionless moment of inertia
of a table tennis ball I* = I/mr? = 0.653 almost carries its maximum value 2/3, giving 1t
almost the strongest coupling between spin and translational degrees of freedom (Figure
2). We believe that this is the single crucial factor which distinguishes table tennis from
the rest of the sports. Table tennis is the sport of the greatest spin-translation coupling
constant in which most frequent and severe excitation of spin degrees of freedom can be
achieved. ' _

Once we have found the solution, it 1s possible to obtain various quantities of physical
interest. Among others, the change in iranslational kinetic energy of two colliding members

due to the collision is
; .
AET = §(m1v;2 + mavl? — mv} —mav;) = —pka(l = en)W?2 - X (23)

and the change in spin kinetic energy of these particles is

AE® = %(Ilw’f + Lot — [w? — hwi) = —prl+ e)W2+ X (24)
where . .
X = 2}1&1(‘(}‘1 — K;Wt) . Wt (25)

represents the flow of kinetic energy from transiational to spin degrees of freedom as a
result of this collision. Finally, the change in total kinetic energy is given by

AE = AED + AED = —plra(l — en) W5 + me(1+ e W2 (26)

Let us consider the significance of the coefficients of restitution in terms of energy
dissipation. In Eq. (23) the change in translational kinetic energy consists of energy loss
due to inelasticity of collisions and outflow into spin degrees of freedom. Since Kk, contains
a factor 1 — &, [Eq. (16)] and thus the dissipative loss 1s proportional to 1 — €2 we see that,
as far as the normal direction is concerned, én = 1 corresponds to the perfectly elastic
collision while en = 0 corresponds to the perfectly inelastic collision (Figure 3).

Next, Eq. (24) together with Eq. (17) shows that the change in spin energy due to a
collision is a balance between the energy loss proportional to 1 — ¢? and the energy inflow
from the translational degrees of freedom X. When ¢, = 1, the tangential component of the
relative veocity between the two points coming into contact 1s unchanged immediately after
collision. This is the case of perfectly slippery surfaces. In this case spin degrees of freedom
can be totally neglected since they are decoupled from translational degrees of freedom.
That is, spin does not affect the course of dynamical evolution of translational motion.

— 22 -
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“Surface properties represented by positive €; correspond to various degrees of roughness.
However, the tangential component of the postcollision relative velocity maintains the
same direction as that of the precollision relative velocity. A perfectly rough surface 13
represented by & = 0 since the tangential component of the relative velocity between two
surface points coming into contact vanishes immediately after the collision. Most long pips
rubber, hard rubber, antispin rubber, and natural wood surfaces including oificial table
surfaces would belong to the positive ¢; category, though their degrees of normal elasticity
may vary significantly.

However, ¢; can systematically classify another kind of surface property at its negative
values. In some collisions such as those of table tennis balls on sticky inverted rubber the
tangential component of the relative velocity reverses its direction. A part of the incident
spin as well as translational kinetic energy is first converted into elastic energy in strained
colliding members gripping each other, and subsequently this strain energy is reconverted
into the spin and translational kinetic energy of the outgoing particles. We will call this
property as the “tangential elasticity.” At ¢, = 0 there is no tangential elasticity, and since
the colliding members grip each other, it is equivalent to a perfectly rough surface. As
|e;| increases, the tangential elasticity also increases, and reaches its maximurmn at ¢; = —1
where no energy is lost as far as the sum of kinetic energies associated with the linear
motion in the tangential direction and spin are concerned. Most dissipative surfaces are
characterized by (en, €)=(0, 0) while energy is conserved at collisions when (€n, €)=(1,
1) or {en, €)=(1, —1). Manufacturers of spinniest modern inverted rubbersheets make
every effort to increase their tangential elasticity while keeping their normal elasticity
substantial. Short pips soft rubbersheets seem to maintain high normal elasticity while
their tangential elasticity is held relatively low. Estimates of representative values of the
normal and tangential coeficients of restitution of table tennis rubber manufactured by
Tamasu in the recent decade are given in Figure 3. Since in reality these coefficients are
velocity-dependent, the values shown in this figure should be considered as the average
over many collisions at a variety of incident relative velocities.

5. 2D MODELS WITH DISPARATE MASS RATIO
Up to Section 4. we have been discussing the general case of collisions between hard
spheres. Having a particular application of the above formulation to model experiments
in table tennis in mind, we now restrict ourselves to the two-dimensional models with a
disparate mass ratio.
~ In considering collisions between a racket and a ball, we know that an official table
tennis ball has the standard mass of 2.5 g while a typical player with a racket weighs at least
60 kg. In collisions between the balls and the tables colliding members are even heavier,
exceeding 100 kg. In these cases a typical mass ratio is as small as myma ~ O(1073),
the reduced mass is 4 ~ my, and thus practically Particle 2 can be considered stationary.
Hereafter, we focus on the motion of Particle 1 in a collision with a stationary partner
Particle 2, and omit the suffixes of Particle 1.
The restriction to 2D models is imposed simply for experimental convenience. We first
require that the incident velocity has no z-component: 9 = (u, —v,0). We further assume
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that the incident ball has no side-spin, or more exactly, that its precollision spin has only a
z-component: & = (0,0,w) (Figure 4). Then, it is guaranteed that the postcollision spin
also has only a z-component.

Under the above conditions the laws of momentum conservation and of angular mo-
mentum conservation given in the previous section are reduced to the following forms:

o = env (27)
uw +rw’ = elu +rw) ' (28)
m{u' —u)=—AP, (29)
m(v' +v) = AP, (30)
I —w)=-rAP, (31)
from which the 2D solutions are found:
v = eqv

u' = (1 —28)u — 255w7

2k u 2K
’—_ _+ —_
s I*r (l I* )w

1
AP, = 2k,my, Kn = —;En
1 - I*
AP, = 25im(u+1w), K= —;—EEI* 11

where the dimensionless moment of inertia of Particle 1 is I* = I/(mr?) = 0.653, appro-
priate for the official table tennis ball.

-

6. MODEL EXPERIMENTS

A series of 2D collision experiments with the two simplest configurations were per-
formed at Tamasu's Tokorozawa Laboratory. One with falling balls with finite initial spin,
“Model 1,” and another with nonrotating balls with some angle of incidence, “Model I1.”
Tn both Models a stationary racket surface lies in the horizontal plane z-z, and the collision
events take place within the vertical plane z-y (Figure 4).

(i) Model I: u =10

In Model I a table tennis ball is given a clockwise initial spin w < 0 and is released
vertically downward at an initial velocity (0, —v) in the vicinity of the racket surface. The
gravitational force on the ball can be neglected compared with the impulsive force exerted
during the collision so long as a typical linear speed v substantially exceeds gAt ~ 1 cm/s.
Here At ~ 1 ms is a typical duration of collision, and g = 980 cm/s? is the gravitational
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acceleration. After the collision with the racket surface the ball is deflected toward the
positive = direction. The postcollision velocity (u', v') and spin w’ are

»*

v = ev, AP, =(1l+en)mv, AP =

(1 — e)mrw

1+ I*
W= (1 e)r(-w) (a)
I +1
I" +e
L —
I“+1 ,
«=1- ()
— ’ B
et=(1*+1){5--—1* (&)

(ii) Model II: w =0
In the Model II experiment a ball without initial spin and with an initial velocity (u,
—v) is incident upon the racket surface. After the collision the ball acquires the spin w' as
well as the velocity (u',v') which are given by

*

v = €,v, AP, =(1+e)mu, AP;=1+I*(1—et)mu

, l—eu

) = el d

“ 1+1I*r ()
14+ 1%y 1

N 0

* r(—w") t

e;“—“l‘—-(l—}-I)—;— (d")

Before we report our experimental results we briefly describe the characteristics of
the apparatus used in these experiments. Our experimental apparatus mainly consists of
a high speed video recorder and a ball machine in addition to the balls and the racket
mount.

Top international players are known to produce the ball speed of up to 120 km/h
immediately after the impact in typical smashing strokes. The maximum top spin loaded
on the ball by top international players reaches 150 rps (Wu et al. 1992). The present ball
machine has the capability to reproduce the above maximum speed and spin. This ball
machine has a pair of parallel-axis rotors with high friction rubber surfaces. The diameter
of each rotor is 13 cm, and the gap between the rotors is slightly narrower than the ball
diameter 3.8 cm. The maximum spin of n ~ 12000 rpm ~ 200 rps and the maximum speed
of v ~ 3000 cm/s ~ 100 km/h can be generated by this ball machine.
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Another major component of our experimental apparatus is a high speed video record-
er, Kodak Ektapro HS Motion Analyzer H54540. It can take images of fast-moving balls
at the highest frequency of 40500 pps (pictures per second). A maximum of 81920 images
can be recorded and stored in IC memory chips. The replay, fast forwarding, rewinding,
and pause of recorded images can be performed quite easily just as one uses a commercial
video tape recorder. In the present experiments all the pictures were taken at 4500 pps,
considering the dimension of the imaging space and the effects of errors in measurements.
A set of movable z-y cordinate axes can be placed on the monitor screen during the replay
of recorded images. By translating this coordinate system over the images we can analyze
the motion of the balls quite efficiently. The minimum displacement of the coordinate
system in z or y directions is limited by the size of a single pixel of the monitor screen.
The entire frame is covered with 256 x 256 pixels.

Finally, we briefly describe the actual procedures we have followed to determine the
speed and spin of the ball from its images. The ball speed is determined by dividing its
displacement Ar = \/{Az)? + (Ay)? by the corresponding time interval Af. As mentioned
above most images were taken at 45300 pps, and thus the time resolution of the ball behavior
is 1/4500 seconds. Practically, however, most measurements of the displacement were
done every ten pictures (At = 1/4500(s/p) x 10(p) = 1/450 s] without loss of accuracy.
Since the raw displacement is read off from the screen images, its conversion into the true
displacement must be done. In order to establish this scale conversion, the number of
pixels over the diameter of slowly moving balls was counted: 110 pixels in 3.8 cm. Thus,
1 pixel corresponds to the actual length s = 0.0345 cm/pixel. If a certain displacement
of the ball during a 10-picture time interval occurs over N, pixels along the z axis, the «
component of the speed is thus found by

_ Ng(pixel) x s(cm/pixel)
vy(cm/s) = A(s) .

Together with the measurement of N, to obtaine the y component vy, we can determine

the two-dimensional speed of the ball.

The magnitude of the ball spin is the number of rotations per unit time. In the current
experiments we have printed alphabetic letters uniformly over the ball surface so that the
spin can be read off from arbitrary viewing directions. The number of rotations n (r/s)
was found by counting the number of pictures N, over which a particular alphabetic letter
on the ball surface rotated through a certain angle & (deg):

_ 4500(p/s)
/S = F 3607 16 (p /e

Note that in this paper n (r/s) and the angular speed w (rad/s) are interchangeably used
to describe the spin on table tennis balls, but they are related to one another by w = 27n
since one rotation corresponds to 27 radians.
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7. RESULTS
(i) Velocity Dependence of ¢,

We begin with the investigation of the velocity dependence of e,. Table tennis balls
with no initial spin w = 0 and with vertically downward initial speed (0, —v) are incident
on a Butterfly basic red Sriver rubbersheet with 1.9-mm thick sponge fixed on a 50-mm
thick horizontal woodblock with PSA (pressure sensitive adhesive). Here “basic” means
that it is not a Sriver FX, and “red” since a possibility cannot be totally excluded that
color might introduce the variation in rubber properties. We vary the incident speed v
from 20 to 100 km/hr, and calculate the coefficient of normal restitution using ¢, = v'/v.
The result is shown in Figure 5. Obviously ¢, is not constant but dependent on v. It is
found that e, is smaller at higher v, that is, collisions at higher impact speeds are more
dissipative. It is also observed that de,/dv — 0 at high v: At higher impact speeds the
constant-¢, approximation becomes progressively better. Specifically, in this experiment
en, —~ 0.4 at high v > 100 km/hr. In another extreme e, ~ 1 at-low impact speeds. The
power-law best fit for 22 collisions is

en = 9.86 x v(cm/s) 0392

which attains the maximum value ¢, = 1 at v = 344 cm/s. Thus, at incident speeds less
than 344 c¢m/s or 12.4 km/h all the normal collisions against the present Sriver racket
surface are perfectly elastic and nondissipative. Combined with the experiments in the
following subsections, it is also found that the above velocity dependence €, (v) is unaffected
by the existence of finite relative velocity in the tangential direction W; = u 4 rw, though
the scatter in the data points becomes more significant.

Incidentally, the ITTF Laws of Table Tennis state that the table surface may be of
any material and shall yield a uniform bounce of about 23 cm when a standard ball 1s
dropped on to it from a height of 30 cm (e.g. ITTF 1995). This condition requires the
normal coefficient of restitution ¢, = 0.876 at the incident speed v = 242 cm/s = 8.73
km/h for a typical ball-table collision of low impact.

(ii} Velocity Dependence of ¢, _

In this subsection we report a series of four experiments related to one another: [1]
Model I experiment on Sriver glued with PSA, [2] Model II experiment on Sriver glued
with PSA, [3] Model I experiment on Feint glued with PSA, [4] Model I experiment on
Sriver glued with trichloroethylene and with Butterfly Clean Chack.

[1] Model I experiment on Sriver glued with PSA In this experiment table tennis
balls at given vertical speeds v with a variety of initial spin n are normally (in the y
direction) incident on a Sriver rubbersheet attached to a horizontal surface (z-z plane)
of a woodblock with PSA. Thus, balls have no tangential component in initial velocity:
u = (. The spin axis of the balls is oriented in the z direction so that the postcollision spin
also has only the z component n’. We restrict ourselves only to two incident speeds, 30
km/h and 70 km/h, but in each case we vary the initial spin from 0 rps up to 200 rps, and
measure the postcollision velocity (u’,v') and spin n'. The results are shown in Figure 6.
In the case of v = 70 km/h we have plotted (n, u') in Figure 6a, and (n, n') in Figure 6b.

According to Egs. {a) and (b), if ¢; were a pure constant over many collisions, these

plots should be best fit with a straight line passing through the origin. Imposing a linear
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fit with vanishing intercepts on these plots, we find the best-fit slope m; = 5.5259 and
the corresponding €,(a’) = 1 — [1 4 (1/I*)][my/(277))] = -0.172 from Figure 6a, and
my = 0.16026 and €,(¥') = (1 + I*)m; — I* = —0.388 from Figure 6b. The discrepancy
between the two values of ¢, obtained from the above two linear fits is mainly ascribed to
the deformation of colliding members which is never taken into account in the hard-sphere
collision models. In fact we observe significantly less discrepancy in the v = 30 km/h case
where the collisional deformation is expected to be smaller. In the latter case the best
linear fits passing through the origin yield m; = 7.052 and ¢,(a') = —0.496 from Figure
6c, and my = 0.053682 and e,(b') = —0.564 from Figure 6d. Obviously, the hard-sphere
models are expected to describe low impact collisions reasonably well while the detailed
description of collisional deformation becomes crucial at high impact collisions.

However, even at moderately low impact collisions Figure 6 shows that the assumption
of constant e; may be poor. In fact, one of the authors, H. Yamazaki, found that at very
low spin the direction of spin is reversed as a result of collisions, giving € a value lower than
—I* = —0.653. This phenomenon cannot be explained so long as we ignore the velocity
dependence of ¢;. When n is not very large, rubber will decelerate the spin on the ball
within a duration of contact {~ 0.9 ms at v = 70 km/h) to the extent that the postcollision
spin becomes reversed. However, if n is sufficiently large, the ball will leave the contact
site before the incident spin is substantially altered within a duration of contact. Further,
we know that high speed collisions have longer contact durations and are less elastic. If
there is a positive correlation between €, and ¢, in the ball-racket interaction, the tendency
to suppress and reverse the initial spin would be less significant, and consequently there
would be a smaller interval of reversed postcollision spin in the (n, n') diagram. On the
contrary, low impact collisions have shorter contact durations and are more elastic. Again,
if we assume a positive correlation between the two coefficients of restitution, we would
conclude that the tangential elasticity in low impact collisions is relatively higher, and
spin reversal trend would be more pronounced, resulting in a greater interval of reversed
outgoing spin. The above situation can be viewed more quantitatively if we choose to
apply the linear fitting to the (n, &) plot in Figure 7: '

€p = Al + Bln. (32)

Once we obtain the linear regression coefficients A; and B, we insert Eq (32) into Egs.
(@) and (b) to find the following quadratic approximations:

* 1-A
u' = —Cyn(n —n,) wherg C, = 27{:_3;{ and n, = 2 ! (33)
B I+ A
n' = Cyn(n —ny) where (= T T and np = ———-% (34)
Since in Figure 7a the data set (n, ) obtained with the use of Eq. (b') shows the better
fitness R than that obtained with the use of Eq. (a'), we adopt A; = —0.80064 and

B, = 0.0029168. Then, we find C, = 0.0138, n, = 617, Cpy = 0.00177, and np = 50.7.
Therefore, the best estimate of the maximurm initial spin which produces the reversed
final spin is 50.7 rps at v = 70 km/h. Similar calculations show that at v = 30 kmn/h
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Ay = —0.81956 and By = 0.0019609 yield C, = 0.00925, n, = 928, C; = 0.00119, and
ny = 85.0 (Figure 7b). Thus, the interval of initial spin n which causes the reversed final
spin n' is broader at v = 30 km/h as argued above (Figure 6b and 6d).

Finally, we find in Figure 7 that the scatter in the (n, ¢) data is significantly more

pronounced at higher incident speed v and at lower initial spin 7. Also, the discrepancy
between the data set (n, € ) obtained from Eq. (a’) and that obtained from Eq. (V')
becomes more significant at higher incident speed v and at lower initial spin n. This is
probably because higher v and less n allow the ball to deform more severely at collisions.
Greater spin is expected to prevent the ball from larger deformation so that the hard-sphere
approximation becomes a good one in higher spin regime.
(2] Model II experiment on Sriver glued with PSA Model II collision experiments
are performed also within the z-y plane. Incident balls have initial velocity (u, —v) but
have no initial spin: w = 0. The incident angle # = arctan(v/u) is defined relative to
the racket surface lying in the z-z plane. The final velocity has no ¥ comonent (v, v/, 0)
while the final spin has only the z component (0, 0, w'). For practical reasons, we again
restricted ourselves to two initial normal speeds, v = 30 km/h and 50 km/h, and recorded
the final velocities and spin for a variety of initial tangential speeds u ranging from 0 up
to 2500 cm/s. The results are shown in Figure 8.

Assuming that ¢, is velocity independent, the best linear fit passing through the origin
to the (u, n') data at v = 50 km/s (Figure 8b) has a slope m; = 0.072881 which yields the
best estimate for e(d') = 1 ~ 27r(1 + I*}m; = —0.438 while the similar analysis of the (,
u') data at v = 50 km/h leads to m; = 0.40582 which yields e:(¢') = [m1 (1 +I*) - 1]/I" =
—0.504 (Figure 8a). A repeated linear regression analysis at v = 30 km/h shows a slope
mq = 0.080427 and a estimate ¢:(d’) = —0.587 from Figure 8d, and m; = 0.38444 and a
estimate €,(c') = —0.558 from Figure 8c. If the hard-sphere approximation were to hold
perfectly, the discrepancy between €;(c’) and &;{d’) should disappear since the (u, u') data
and the {u, n') data are generated from the same collision events. Therefore, it is reasonable
to argue that the lower the normal incident speed v, the less the collisional deformation of
the ball and racket and consequently the less the discrepancy between the two data sets.
We also find that the magnitude of ¢; increases as v decreases, which indicates that there
is a positive correlation between the tangential elasticity and the normal elasticity.

However, the (u, ¢) plots in Figure 9 shows a clear indication that the constant-
€; approximation must be reconsidered. At least the tangential elasticity —e; is more
pronounced at lower tangential speeds u. To seek a better approximation, we apply the
linear regression analysis to the (u, ¢;) data sets:

€ = _4.2 + Bg'u.. (35)

Once we obtain the above coefficients, we insert Eq. (35) into Eqgs. (¢) and (d) to find the
following quadratic approximations:

* 14+ 74
u' = Cou(u—u,) where C,= 1Bj_—IP and u. = —H%Bz—z (36)
1-A
n' = —CdU(’U. — ’U,d) where Cd = 5_7;7‘_('% and Ug =~ 32 2 . (37)
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Since the best linear fit of ¢ resulting from Eq. (¢') goes below —1 at low tangential
speeds u, we choose to retain only the results from e(d’') plots. In Figure 9a we find
the best estimate of the velocity dependence at v = 50 km/h to be ¢ = Az + Bau with
A; = —0.70396 and B> = 0.00012921, which leads to C,; = 0.0000510, u, = —6410,
C; = 0.0000655, and uy = 13200. Similarly, the linear fitting of (u, e;(d')) data at v = 30
km/h in Figure 9b yields 4; = —0.86279, B, = 0.00016088, which leads to C. = 0.0000635,
u, = —4160, Cy = 0.00000815, and ug = 11600. '

The above results can be viewed in terms of the variation of ¢, over incident angles 8

as shown in Figure 10. Clearly, with the normal incident speed v fixed, greater tangential
elasticity —e; is observed at higher incident angles §, that is, at lower tangential incident
speeds u. The discrepancy between the values of e, determined with Eq. (¢') and Eq.-(d')
appears greater at higher incident angles, signifying that the hard-sphere approximation
becomes worse as collisions tend to be more normal. It is also clear from Figure 10 that the
tangential elasticity is greater at higher normal incident speeds, indicating the tendency
that the tangential and normal elasticities accompany one another.
[3] Model I experiment on Feint glued with PSA To illustrate the use of the present
analysis, we perform another Model I experiment on the Butterfly Feint OX long-pips
rubbersheet glued to a stationary woodblock with PSA, and compare it with the results
from Sriver in [1]. Balls with incident velocities controlled around (v = 0 km/h, v = 30
km/h} are normally incident on Feint lying in the z-z plane. The incident spin in the z
direction is varied from 0 to 200 rps, and the outgoing velocity components {u', v') and
spin n' = w'/(27) are recorded.

In Figure 11 the normal coefficient of restitution €, is plotted against the initial spin
n, and is compared with the Sriver case. Apparently, ¢, is rather uniform over the range
of n and falls around 0.605 while Sriver has a greater e,(n = 0) ~ 0.637 and shows a slight
increase as incident spin increases.

For the tangential elasticity, the (n, v') plot is shown in Figure 12a. If the tangential
coefficient of restitution were independent of the initial spin and the deformation of collid-
ing members were neglected, the plot would produce a straight line passing through the
origin. The best-fit line passing through the origin has a slope my = 5.2462 from which
the best estimate of ¢ can be found: ¢(a') = —0.113 (Figure 12a). Compare this with
e:(a') = —0.496 for Sriver (Figure 12c). A similar procedure applied to the (n, n') plot
yields a slope m; = 0.29173 and the best estimate €, (¥') = —0.171 (Figure 12b), compared
with (') = —0.564 for Sriver (Figure 12d). However, the real behavior of Feint’s ¢; is far
from constant with respect to the initial spin n as shown in Figure 13. At low initial spin
up to 20 rps Feint behaves, as expected from an ideal long-pips rubbersheet, as a perfectly
slippery surface.  However, as n increases from 20 to 70 rps, €; drops rapidly down to
a negative value of ~ —0.1, and appears to stabilize around that value at higher initial
spins. This demonstrates that Feint is a complicated rubbersheet which possesss a dual
character: At lower relative tangential speeds it exhibits normal (i.e. positive and high in
¢;} behavior as a long-pips rubber while at higher relative tangential speeds its character
progressively becomes similar to that of typical inverted rubbersheets of low tangential
elasticity, or probably that of short pips rubbersheets. :

[4] Model I experiment on Sriver glued with trichloroethylene and with But-
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terfly Clean Chack Finally, we investigate the effects of trichloroethylene (TCE, Taishin
Chemicals Limited) and Butterfly Clean Chack (CC, mainly cyclohexane) on the coeffi-
cients of restitution, which we compare with the previous results from PSA. The rubber-
sheet used in this experiment is Sriver, and again the Model I procedure is adopted.

Figure 14 reports the variation of e, over various initial spin velocities when three kinds
of adhesives, PSA, TCE, and CC, are used to glue a Sriver rubbersheet on a woodblock.
We find that the difference between TCE and CC is not significant while the difference
between PSA and the above two is clearly visible: Gluing with special adhesives boosts
en up to 10% at low relative tangential velocities while the special glue effect becomes
less pronounced at higher relative tangential speeds. In other words, gluing with specxa,l
adhesives helps broaden the range of n over which high €, is enjoyed by players.

Effects of TCE and CC on ¢; can be found by comparing the (r, u’) plots and (n, n')
plots with those discussed in [1] (Figure 15). In the constant-e; approximation its best
estimate can be obtained from the slope of a line passing through the origin which is best
fit to the (n, u') plots: €(a’) = —0.574 for TCE (Figure 15a) and —0.593 for CC (Figure
15¢), compared with —0.496 for PSA (Figure 15¢). Thus, a 16% and 20% enhancement of
the tangential elasticity is observed by using TCE and CC instead of PSA. This leads us to
suspect that special glue effects appear more dramatically in the change of ¢; rather than
in the change of e,. The (n, n') plot is not appropriate for the purpose of determining the
best estimate of €, in the constant-e; approximation, because there is an interval of low n
over which the postcollision spin n' nearly vanishes or is reversed in direction. Therefore,
we give up the constant-e; approximation, plot €(b'} over a variety of n, and seek its best
linear fit. The results are e{b') = A, + Bin with 4, = —0.81627, By = 0.0017159 for
TCE, A; = —0.90203, B, = 0.0030467 for CC, and A; = —0.81956, B, = 0.0019609 for
PSA (Figure 16b). The corresponding quadratic approximation to the (n, n') plots ylelds
n' = Cyn(n — np) with Cp = 0.00104, ny = 95.3 for TCE, Cj = 0.00184, n, = 81.8 for CC,
and Cy = 0.00119, np = 85.0 for PSA. We suspect that the interval of initial spin n over
which the spin reversal occurs, i.e. 0 < n < ny broadens due to the application of TCE or
CC. In the quadratic approximation ny( TCE) shows a 12% increase over ny(PSA) though
ns(CC) has dropped by 4% . The above nonlinear behavior of n'(n) seems to reflect the
effects of TCE and CC to soften the sponge below the rubbersheet to the extent that the
incident spin energy is efficiently absorbed and stored as strain energy of the rubber-sponge
complex. In fact, the experimental results in Figure 15b, 15d, and 15f show more clearly
that the range of n which gives rise to almost vanishing n' is 38 rps < n < 150 rps for
TCE, 19 rps < n < 98 rps for CC, and 34 rps < n < 110 rps for PSA, signifying the
obvious advantage of TCE over CC or PSA. Finally, the values of ¢ obtained from Eq.
(a') are plotted against n for the three kinds of adhesives in Figure 16a. Just as seen in
Figure 14 for ¢, there are obvious enhancements in tangential elasticity at low initial spins.
The enhancement factor reaches almost 200% for CC at extremely low n while it tends to
diminish to 100% (no enhancement) as n approaches 150 rps.

However, the above results are only preliminary and must be viewed with some caveats
since there are many important experimental factors to be carefully controlled, including
the initial concentration of the adhesives, and the time dependence of their concentration,
i.e. the speed of volatile loss in the rubber-sponge complex. The authors believe that this
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line of research will have a capability of providing players as well as manufacturers in our
sport with much beneficial and quantitative information.

8. CONCLUSION

In the present investigation we have examined the collisional interactions of the table
tennis balls with two types of rubber glued to a woodblock. with a choice of adhesives
in terms of two significant parameters, the normal coefficient of restitution e, and the
tangential coefficient of restitution e;, under the major assumption of hard-sphere collisions.
Our main results and conclusions have been stated in Section 7. Research along this line
has only begun. We have confirmed that neither coefficient of restitution is generally
independent of the incident relative velocity. Thus, unfortunately a simple description of
collision dynamics in terms of constant coefficients of restitution turns out to be insufficient
to account for the complex ball-racket interactions. Still, it has been demonstrated that by
allowing for the velocity dependence of these coefficients and by keeping the limitations of
the hard-sphere models in mind, a wealth of significant information can be uncovered as a
result of experimental and theoretical methods presented in this paper. Extension to the
present work includes the investigation of a more complete variety of rubbersheets, sponge
quality and thickness, blade quality and thickness, adhesive composition and concentration
over a more extensive and continuous range of incident parameters. Most importantly,
however, models of collisional deformation must be incorporated while retaining as much
simplicity of hard-sphere collisions as possible.
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(372, ©2)

Hard sphére characterized by

Mass m=2.5 g

Radius r=1.9 cm

Moment of Inertia I=0.653mxr =5.89 gcm

Figure 1 A schematic diagram of a two-body hard-sphere collision in three dimensions. A
hard-sphere particle is fully characterized by its mass, radius, and moment of inertia.
Particle ¢ with initial linear and angular velocities ¥; and &J; undergoes a collision and
ends up with final velocities 7} and &}, where i = 1,2. At the instant of the collision
the center of Particle 7 is located at Point C;, and Particle 1 exerts an impulse AP
on Particle 2 at Point P, while Particle 2 exerts a reaction impulse —AP on Particle
1 at Point P;.
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Model I

P

uf

AP.

A | Model TIT

AP:

Figure 4 A schematic diagram of Model I and Model II experiments. In both experiments
the racket surface lies in the z-z plane and the two dimensional collision event is
confined within the z-y plane. In Model I experiments balls are released vertically
downward with a given initial speed v and with different clockwise initial spins w. In
Model II experiments balls without spin and with a given vertical speed are shot at
various horizontal incident speeds u. i.e. at various incident angles 8.
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Normal collisions without spin: u=0, o= 0
v {cm/s) vs £

1/30(22)
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b ———y=o9ssle" x1(-0.3919), R= 0.94652 :
0.2 L e
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Figure 5 The velocity dependence of the normal coefficient of restitution. Balls without
spin are shot normal to the Sriver rubbersheet glued to a woodblock with PSA. Inci-
dent normal velocities are in cm/s. The best power-law fit and corresponding equation

are displayed.
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v=70 km/h --> n (rps) vs g,

3/1(12), 3/22(11), 3/23(10), 3/28(22-3), 3!29(20-3‘), 4/3(33)
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Figure 7 Model I experiments on collisions of the balls with a basic Sriver red rubbersheet
on 1.9 mm-sponge glued to a woodblock with PSA. Incident spin n is in revolutions
per second (rps). (a) (n, &) with incident normal speed v = 70 km/h. (b) (n, &) with
incident normal speed v = 30 km/h. A data set with ‘circular symbols is generated
with the use of Eq. {a') while another data set with square symbols is obtained with
the use of Eq. (¥'). The best linear fits and corresponding equations are displayed.
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Figure 9 Model IT experiments on collisions of the balls with a basic Sriver red rubbersheet
on 1.9 mm-sponge glued to a woodblock with PSA. Incident tangential speed u is in
em/s. (a) (u, &) plot with incident normal speed v = 50 km/h. (b) (u, &) plot with
incident normal speed v = 30 km/h. A data set with circular symbols is generated
with the use of Eq. (¢') while another data set with square symbols with the use of
Eq. (d'). The best linear fits and corresponding equations are displayed. :
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Figure 10 Model II experiments on collisions of the balls with a basic Sriver red rub-
bersheet on 1.9 mm-sponge glued to a woodblock with PSA. The incident angle &
with respect to the racket surface is in degrees. (a) (8, €;) with incident normal speed
v = 50 km/h. (b) (8, e:) with incident normal speed v = 30 km/h. A data set
with circular symbols is generated with the use of Eq. (¢') while another data set
with square symbols is obtained with the use of Eq. {(d"). The best linear fits and
corresponding equations are displayed.
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Model I: u=0
v=30 km/h --> n (rps) vs €

4/5(12), 4/10(20); 4/20(17-1)
Comparison of Feint with Sriver

£ i i
n H ]
0.4 - B J S— M
sriver-------y = 0.6;3704 + 0.09055311:( H:= 0.81977 -
[Feint———y = 0.60505 + 3.8186e-05x R= 0.083216 ]

0.2 e :

0 - 11 I W T | | I YOV TR W NS T N W' I T DO B | |

0 50 100 150 200 250

n (rps)

Figure 11 Comparison of Feint OX with Sriver on 1.9 mm-sponge by Model I experiments.
(n, €,) plot with incident normal speed v = 30 km/h. Circular symbols represent the
data for Sriver while square symbols represent those for Feint OX. Both rubbersheets
are glued to a woodblock with PSA. The best linear fits and corresponding equations
are displayed. Apparently, €, is rather insensitive to the initial spin n.
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Model I: u=0 ,
v=30 km/h --> n (rps) vs g,
4/5(12), 4/10(20); 4/20(17-1)
Comparison of Feint with Sriver
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Figure 13 Comparison of Feint OX with Sriver on 1.9 mm-sponge. Model I experiments
on collisions of the balls with Feint and with Sriver to determine the dependence of ¢;
on the initial spin n. Both rubbersheets are glued to a woodblock with PSA. Incident
normal speed is set to v = 30 km/h. Incident spin n is'in revolutions per second (rps).
Circular and square symbols represent the (n, ¢;) data sets for Feint obtained with the
use of Eq. (a') and Eq. ('), respectively. Diamond and cross symbols represent the
(n, &) data sets for Sriver obtained with the use of Eq. (@) and Eq. (¥'), respectively.
The best linear fits and corresponding equations are displayed.
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Model I: u=0
v=30 km/h --> n (rps) vs g_

4/5(12), 4/10(20); 4/22(20); 4/22(20)
Comparison of PSA, TCE, and CC on Sriver
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Figure 14 Comparison of PSA, TCE, and Clean Chack applied to Sriver on 1.9 mm-
sponge. The dependence of ¢, on the initial spin n is determined for each adhesive
by Model I experiments. The initial normal speed is set to v = 30 kmn/h. Circular,
square, and diamond symbols represent the data with PSA, TCE, and Clean Chack,
respectively. The best linear fits and corresponding equations are displayed.
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Figure 15 Model I experiments on collisions of the balls with a basic Sriver rubbersheet
on 1.9 mm-sponge glued to a woodblock with TCE, with Clean Chack, and with PSA.
Incident and outgoing spins are in revolutions per second (rps) while the tangential
component u' of the outgoing velocities is in cm/s. Incident normal speed is set to
v =30 km/h. (a) (n, u') with TCE. (b) (n, n’) with TCE. (¢} (n, v') with CC. (d) (n,
n') with CC. (e) (n, u') with PSA. (f) (n, n') with PSA. The best linear it passing
through the origin to each plot yields an estimate of ¢, if it is assumed constant.
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Figure 16 Comparison of PSA, TCE, and Clean Chack applied to Sriver on 1.9 mm-
sponge. The dependence of ¢; on the initial spin n is determined for each adhesive by
Model I experiments. The initial normal speed is set to v = 30 km/h. (a) Circular,
square, and diamond symbols represent the data obtained with the use of Eq. (a') for
PSA, TCE, and Clean Chack, respectively. (b) Circular, square, and diamond symbols
represent the data obtained with the use of Eq. (%) for PSA, TCE, and Clean Chack,
respectively. The best linear fits and corresponding equations are displayed.




